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Block 20 continued:

o The method processes image sequences of arbitrary length and exploits the inherent
redundancy for a significant reduction in error over time.

e No restrictions or assumptions are made about the camera motion or the surface
structure. Both quantities are fully recovered using this method.

Our method combines the “direct” motion vision approach of Horn, Weldon and Negah-
daripour with the theory of recursive estimation. Most importantly: it really works and we
show results on a variety of real image sequences.
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1 Introduction

In this paper we address the problem of estimating the 3D structure of a scene and the
relative motion of a camera with respect to that scene from a sequence of images acquired
by the camera. This problem, also referred to as the structure and motion estimation
problem has been studied extensively in computer vision with rather limited success in the
general case. We show how the use of multiple frames allows us not only to recover both
structure and motion but also to do so in a way that is robust and practical for real images.

Knowledge of scene structure and camera motion is useful for the navigation of au-
tonomous vehicles on land, undersea and in space. Information about the 3D structure of
the scene is also of interest for the localization and recognition of objects.

Almost all exisiting approaches to solving the structure and motion estimation problem
have at least one of the following two properties:

1. They use the optical flow field or feature matches as input.

2. They use only two sequential frames out of an image sequence.

Both of these properties represent severe limitations, as we discuss below. The purpose
of this paper is to show how both limitations can be overcome to produce practical and
accurate estimates of structure and motion.

1.1 Feature and optical flow based structure and motion estimation

Optical flow is a term that describes computational approximations to the projection of
a 3D velocity field into the image plane (see section 1.4 for details). A number of methods
are available for computing this vector field of image velocities: Anandan [3], Horn and
Schunck [26], Hildreth [24], Nagel and Enkelmann [37], Heeger [20] and many others. The
computation of optical flow is computationally very expensive and the optical flow usually
exhibits significant systematic and random error.

Features are locations in the image that are easily identified such as edges, corners or
other distinguished points in the brightness array. Feature-based methods first determine
such locations in two frames and then match features between frames. Conceptually, the
optical flow field is a set of dense feature matches, one match for each pixel in the image.

Conversely, one can view feature matching methods as optical flow computation at a few/

selected locations where the probablity of obtaining a good optical flow estimate is large.
Therefore, the problems we encounter in feature matching are essentially the same as in op-
tical flow except that we focus on those locations where these problems are least noticeable
by sacrificing the availability of dense information.

Despite the difficulties in computing optical flow or feature matches both are very
intuitive intermediate representations with an exactly quantifiable relationship to the pa-
rameters of rigid body motion and scene structure (assuming that the optical flow prefectly
matches the motion field). Unfortunately, however, this: relationship is nonlinear and no
closed-form solution for the general case exists. Among the methods which use optical flow
or feature matches are Bruss and Horn {10], Adiv [1], Tsai and Huang [49], Longuet-Higgins
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and Prazdny [31), Ullman [50], Heel {22], Mathies, Szelsiki and Kanade [34], Subbarao [47],
Spetsakis and Aloimonos [45], Broida and Chellappa [8].

1.2 Two-frame structure and motion estimation

Features matches and optical flow are generally computed from two sequential frames in
an image sequence. As a consequence, the information that can be extracted from a single
optical flow field is limited to a snapshot of short duration. Since both image brightness
measurement and optical flow computation introduce error, such a single snapshot cannot
provide very accurate information. In addition, entire sequences of images are usually
available, possibly in a continuous fashion, in the motion imaging situation. Repeatedly
applying a two-frame algorithm to sequential pairs of images does not exploit the noise-
reduction potential available in the form of redundant information.

Examples of two-frame motion estimation are Bruss and Horn [10], Adiv (1], Tsai and
Huang [49], Longuet-Higgins and Prazdny [31], Weng, Huang and Ahuja [54], Fennema and
Thompson [13], Waxman and Wohn [53], Roach and Aggarwal [43], Mitiche [36], Negah-
daripour, Weldon and Horn (40}, [28].

1.3 Direct and multiframe methods

Recently a number of approaches have been proposed to overcome the aforementioned
difficulties. Some researchers have developed techniques that extract motion and structure
information without computation of the optical flow. Best known are the “direct” methods
of Horn, Weldon and Negahdaripour [40], [41)], [28]. The basis of this work is the “brightness
change constraint equation” which links image brightness values to motion and structure
parameters. Despite this simplification, the resulting equations are still nonlinear and no
closed-form solution exists in the general cases. The authors show how motion or structure
can be recovered in various special cases such as purely translational motion or planar
surfaces.

Aloimonos, Herve and Ito (2], [29] suggested a method for planar surfaces and developed
the concept of a “linear feature” for direct motion estimation. This work also makes use
of the brightness change constraint equation mentioned above. Kanatani [30] uses “feature
functionals” to determine 8 flow parameters from which the motion and normal of a planar
surface may be obtained.

The idea of using multiple frames in order to reduce the influence of noise has become
increasingly popular recently. Ullman [50] presented a method termed the “incremental
rigidity scheme” which operated iteratively on a sequence of images to recover structure.
It required feature extraction and matching.

Broida and Chellappa [9] suggested the use of a Kalman filter for iterative improvement
of estimates for structure and motion parameters over a sequence of images. They also used
a sequence of matched features as input for their algorithm. In addition, a model for the
object in the scene was necessary which contained information about the relative location
of feature points.

Another recursive depth estimation procedure for more than two frames was suggested




by Bharwani, Riseman and Hanson {5]. Using feature matches and known translational
motion depth is then recovered.

Stuller and Krishnamurthy (46] also used a Kalman filtering approach in which the
projected translational motion of an object is formulated in terms of a dynamical systems.
Then a recursive estimation scheme is used to recover the 2D translational motion.

Dickmans [11], [12] has investigated a Kalman filtering based motion analysis algorithm
which he termed “4D dynamic scene interpretation”. The algorithm and a matching hard-
ware architecture have been used successfully for the guidance of vehicles in real traffic
environments.

Backed by encouraging experimental results, Matthies, Szeliski and Kanade [35], {34]
presented a practical and simple method for estimating structure using a Kalman filter
based algorithm over a sequence of images. They succeeded in recovering dense depth
maps of unprecedented quality from real images under the assumption of known purely
translational motion parallel to the image plane.

Heel [21], [22], [23] independently developed a Kalman filter based method for the
dense estimation of structure similar to the one by Matthies, Szeliski and Kanade. This
“dynamic motion vision” had the additional capability of estimating the parameters of rigid
body motion rather than requiring them to be known. It also placed no restriction on the
nature of the motion.

A prominently different approach was the “epipolar image” method by Bolles and Baker
(7] (also Yamamoto [56]). This method is particularly interesting because it does not
require optical flow computation or conventional feature matching and makes use of multiple
frames. For translational motion parallel to the image plane, a horizontal slice through a
sequence of images provides important information not only about rigid body motion and
structure but also about occlusion and segmentation. More recently [4] Baker and Bolles
have generalized this method to handle more complex motions and to work incrementally
as new images become available. In this case, the method becomes similar to previously
mentioned Kalman filtering methods.

1.4 Direct dynamic motion vision

In this paper we present an algorithm for the dense estimation of structure and motion
that

o does not require the computation of optical flow or feature matches

¢ uses an image sequence of arbitrary length to reduce the effect of noise.

In doing so, this method overcomes the obstacles that previous approaches encountered for
estimating structure and motion efficiently and robustly.

We build on the “direct” work of Horn, Weldon and Negahdaripour to avoid computa-
tion of the optical flow. We combine it with the Kalman filter recursive estimation technique
to continuously update and improve structure information over time, as new measurements
from images become available. A least-squares motion estimation procedure is interleaved
with the stages of the filter, so that both motion and structure are obtained simultaneously,
which was not previously possible in the case of general surfaces and motions.




The paper is organized as follows: We briefly review the direct approach to motion
vision and the theory of recursive estimation as they apply to our application. We then for-
mulate the dynamic motion and structure estimation algorithm by combining direct depth
measurement with Kalman filtering. After the outline of the approach, each stage of the al-
gorithm, depth measurement, update, prediction, motion estimation and smoothing/filling
in are discussed in detail, analyzed with respect to their algorithmic complexity and eval-
uated experimentally. Finally, the results which may be obtained using this method are
evaluated in an extensive experimental section using a variety of real image sequences.




2 The Direct Motion Vision Approach

2.1 The motion imaging situation

The traditional approach to motion vision as outlined by Longuet-Higgins and Prazdny
[31] was to compute the optical flow as an intermediate representation of motion information
and then compute rigid body motion and structure parameters using the optical flow.
Optical flow denotes a computational approximation to the projection of the 3D velocity
field of a scene into the image plane.
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Figure 1: Coordinate system and projection geometry in the motion imaging situation.

In what follows we assume that only one independently moving rigid body is in the
image area of interest. This is the case when a camera moves through a static environment
for example. If multiple moving objects are present a segmentation into regions of single
independently moving objects must be performed prior to applying this formalism.

Suppose we denote the relative motion of the camera with respect to the scene by a
translation ¢ = (U, V, W]T and a rotation w = [4,B,C]T. Choose a coordinate system as
shown in figure 1 with the origin at the camera’s center of projection (principal distance
f) and the optical axis aligned with the z axis & = [0,0,1]T. A point P at location R =
[X,Y, Z]" in the scene is imaged at pixel location ¢ = [z,y, f]T. The value Z is referred to
as the depth of point P.

Given this situation, the point P will move according to

ﬁ:-t—wxn. (1)




where the dot denotes temporal differentiation. We can think of the vector R as a 3D
motion vector that is attached to a point on the surface of the scene in view. The collection
of these vectors for all surface points constitutes a 3D velocity vector field. Suppose this
velocity field is now projected into the image plane via the equation

_f
r= ZR. (2)
of perspective projection. We differentiate equation (2) and then substitute (1) to obtain
1 1
i=—lx(rx(?rxw-7t) 3)

The vector # describes the motion of the projection of P into the image plane. The collection
of r vectors at every point in the image plane is a vector field of image velocities commonly
referred to as the motion field This is the motion information that an observer could
perceive given a perfect motion “measurement” device.

2.2 Motion and structure from optical flow

We investigate the motion field equation (3) in more detail. This vector equation for
P consists of three components, the third of which is identical to zero, since the third
component of r is the constant focal length f. The remaining two components of the image
velocity (2, ) = (u,v) can be written as

= LW ey - B+ )+ Cuf) @
0o = LAV, Z(4 + 1) - Bay - Caf). (5)

These motion field equations can be established at every pixel (z,y) in the image plane. The
classical assumption is that estimates of the image velocities (u, v) can somehow be obtained
from an input image sequence. The task is then to compute the motion t = [U,V,W]T,
w = [A,B,C]T as well as the depth Z given the velocities (u,v).

Note that the motion t and w is a global quantity, i.e. there is one rigid body motion for
all points in the image plane. The depth Z however, may vary spatially. In an image region
of n X n pixels we therefore have 2(n x n) motion field equations for n x n+ 6 unknowns. We
also observe that translation and depth are determined only up to a common scale factor
i.e. if t and Z are a solution to the motion field equations then so are kt and kZ, for any
k # 0. We can therefore at best hope to recover the direction of translation and the depth
relative to that translation. Finally, the fact that the unknowns Z, t and w are related in
a non-linear fashion in equations (4), (5) makes the motion and structure estimation from
optical flow hard and, to date, unsolvable in closed-form.

2.3 Optical flow

Estimating the optical flow (u, v) from images is the other part of the traditional motion
vision problem. We wish to determine a vector field (u,v) (i.e. a vector at every point
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(z,y) in the image) that approximates the motion-field (4), (5) as closely as possible. To
accomplish this we note that a particular optical flow vector points from the projection of
a point in one image to the projection of the point in the subsequent image. Conceptually,
an optical flow vector therefore connects corresponding points in sequential images.

It is generally assumed that the brightness of corresponding points in two subsequent
images is the same. Horn and Schunck [26] formulated this in

dE
7 0 (6)
where E denotes the brightness of a point in the image and t is the time. This can be

expanded into the brightness change constraint equation

%—f—j—j+g—f%+§£= U+ E,v+ Eq=0 (7)
where E;, E,, E; are the brightness derivatives in spatial and temporal directions and (u, v)
is the optical flow introduced above. The brightness gradient may be obtained by a finite
differences approximation for the derivatives directly from the images.

The brightness change constraint equation links the brightness values E measured by the
camera system to the optical flow values (u,v) needed for motion and structure estimation.
We see that with one brightness change constraint equation at every image point (z,y) and
two unknowns (u,v) we are dealing with an underconstrained problem. We must therefore
introduce an additional constraint such as the smoothness of the optical flow field (as done
by Horn and Schunck [26] and Hildreth [25]) in order to solve equation (7) for the desired
(4, v) everywhere.

Nevertheless, optical flow computation is both expensive in terms of computation time
and subject to both systematic error, such as the aperture problem, and random errors due
to image noise. The necessity to compute the optical flow has been a major obstacle on
the path to real-time motion vision.

We might add that criticism of the validity of the brightness change constraint assump-
tion (7) has been voiced (see Verri and Poggio '51], Schott [44]). Indeed, equation (7) is
only a simplified approximation of reality which is sub ject to errors in most real situations.
The main advantage lies in its simplicity. We will later evaluate the amount of error in the
brightness change constraint equation for our specific application.

2.4 Skipping optical flow: The direct approach

As we have outlined, the estimation of scene structure and relative camera motion
was traditionally a two-stage process consisting of the computation of optical flow from
brightness values, followed by the recovery of motion and structure via the motion field
equations. In this approach, the optical flow is no more than an intermediate representation,
the computation of which involves a number of difficulties.

Horn, Negahdaripour and Weldon (38}, [40], [27], [28], [39], (42] were among the first
to point out that the computation of optical flow was not a necessary step in the process
of determining structure and motion from image sequences. The main advantage of this




approach are tremendous improvements in computational efficiency since the computation
of optical flow is expensive as we have pointed out.

Conceptually, the idea is as follows: The brightness change constraint equation (7) links
brightness values to optical flow. The motion field equations (4), (5) link optical flow to
rigid body motion and structure. Instead of computing optical flow from (7) and then using
it in (4), (5) to obtain motion and structure we plug the motion field equations (4), (5) into
the brightness change constraint equation (7) and obtain one equation which links image
brightness gradients to motion and structure parameters.

We can rewrite and simplify the resuiting equation. For a detailed derivation refer to
Horn and Weldon {28]. We obtain

2 v wtE =0 ®)
z
in which
~fE; E,f+y(zE: +yEy)/f
s = ~fE, and v=| -E.f-z(zE; + yE,)/f | . (9)

Note in (9) that s and v contain only measureable or known quantities such as the
derivatives of brightness E;, E,, E; and the location (z,y) at which we are evaluating the
constraint. The unknowns in equation (8) are therefore the motion t and w and the depth
Z - precisely the quantities we are interested in.

In this formulation, the task is to compute n x n values of Z and 6 values for t and
w (actually only 5 due to the scale-factor ambiguity) from n x n nonlinear equations. In
their work Horn, Negahdaripour and Weldon showed how motion and structure parameters
may be estimated using equation (8) for a number of special cases (pure translation, planar
surfaces etc.). A major difficulty they encountered was the fact that motion and depth are
linked nonlinearly in (8) and cannot both be recovered in general. Note, however, that if
one of either motion or depth is known, the other quantity is easily obtained from linear
equations. This observation is the key to the iterative estimation of both structure and
motion from a sequence of frames.




3 Recursive Estimation and Dynamic Motion Vision

The structure and motion estimation problem as we have previously outlined it is in-
herently instantaneous. Two subsequent frames are commonly used to compute the optical
flow so that any structure or motion result obtained from this optical flow is based on infor-
mation from those two time instances only. In the direct approach we use two subsequent
frames to compute the brightness gradients E;, E, and E;. Structure and motion recovered
from a direct method corresponds to the information from those two frames only.

As we will see, the motion and in particular the structure information obtainable from an
instantaneous snapshot is rather noisy in general. Conceptually information from multiple
frames may be useful to reduce this noise and produce a useful estimate over time. There are
two fundamentally different ways in which multiple frame measurements can be integrated.

1. Global or batch methods. In this case, the data from n frames is collected and then

input to the integration procedure. We expect this to produce the most accurate
result for the given set of frames. However, it necessitates storage of large amounts
of data and does not produce any result until all frames have been acquired.

2. Recursive or iterative methods. Here we maintain a current estimate of the quantities
of interest which are updated each time a new frame becomes available. The accuracy
of such a method should be inferior to a global technique and convergence/stability
becomes an issue. However, no storage is required and an estimate is available at
every time instant.

Due to the continuous nature of visual information acquisition and the large amounts of
data involved we focus here on a recursive estimation method for temporal integration.

3.1 Recursive Estimation Theory

There are many in-depth treatments of recursive estimation theory such as Gelb [17].
Knowledge of dynamical systems theory is also useful and provided by standard textbooks
such as Luenberger [32], Franklin and Powell [15], Féllinger [14], Willsky [55] and many
others. We present here an extremely simplified summary of essential concepts in recursive
estimation theory which we will use for time-continuous motion vision. We will use notation
to match the motion vision problem to make the applicability of this theory to our problem
domain apparent.

Suppose our task is to estimate a (scalar) quantity Z(k) from a sequence of measure-
ments Z; taken at discrete points k in time. Suppose further that the Z, are generated by
a stochastic process

Zy = Z(k) + ng (10)

where n; is zero mean Gaussian noise of known variance pi. Finally, we know that the
quantity Z changes over time according to the difference equation

Zewr = f(Z). (11)




The goal is to compute at every time instance k an estimate Z, which is as close as
possible to the true value Z(k). Kalman formulated and solved this problem in a far more
general case (see the literature cited above) and the resulting algorithm is referred to as a
Kalman filter.

The Kalman filter maintains an estimate Z; and a variance Pr. When a new measure-
ment Zj with variance p; becomes available we perform the following update operation (the
arrow denotes an assignment):

Zi/pk + 2i/Dr

2 L 12

. 1/pe + 1/ Pk (12)
1

by - —————— 13

Pe 1/pe + 1/ x (13)

In words: the new estimate of Z is a weighted sum of the old estimate and the new
measurement with the variances as weights. If, for example, a very noisy measurement
is received, its variance p will be large compared to the variance of the old estimate p.
As a consequence the measurement will have very little influence on the new value of the
estimate. Conversely, a high-quality measurement will dominate the weighted sum due to
its small variance and cause the new estimate to be very similar to its value.

The update formulas (12) and (13) may also be obtained from a maximum likelihood
estimation of Z and its variance given the previous estimate and the measurement under
the zssumption that the estimate Z, and measurement Z; are uncorrelated.

Notice the following feature of the variance update process (13): Suppose without loss
of generality that p, < p.. Now (since variances are positive)

1 1
— < =
pe+ /b 1/p

so the updated variance is smaller than both the current variance and the measurement
variance. In other words, variance decreases strictly during the update procedure. This
captures the notion that the quality of the estimate improves over time and indicates that
later measurements will have less and less influence on the resulting estimate.

An additional difficulty is introduced by the fact that Z(k) may vary with time. It is
therefore not possible to simply combine the result Z; obtained through an update at time
k with a measurement obtained at time k + 1. We must first predict an estimate for time
k + 1 using the known temporal behavior:

Zin — f(Zy) (15)
2
ﬁk+1 — (g—é) ﬁk- (16)

The original Kalman filter and the proofs for optimality require the function f to be linear.
We will see that f is indeed linear in our application.

We can visualize the operation of the Kalman filter with the help of a block diagram
as shown in figure 2. Note the simplicity and locality of both update and prediction stages
which make this estimation particularly appealing from an algorithmic point of view.

= pr < Pk (14)
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Figure 2: Block diagram of a Kalman filter.

3.2 Dynamic Motion Vision

In this section we will outline how the theory of recursive estimation can be combined
with the direct approach to motion vision. The result is a time-continuous estimation
procedure which not only extends the one-frame case to multiple frames but allows us to
recover both motion and structure by exploiting the iterative nature of the Kalman filter,
something that was not possible previously. We refer to this technique as “dynamic motion
vision”. -

Suppose for now the rigid body metion vectors t and w are known. In this case, the
brightness change constraint equation (8) contains only one unknown and can be solved for
the depth Z. By evaluating it, we can therefore obtain a value of Z at every point (z,y) in
the image and at every time instance k. Due to noise and errors in the brightness change
constraint assumptions, this value will differ from the true value of Z of the point which
is imaged at that pixel. Further, the value of Z at a particular pixel changes over time
due to the relative motion between ob ject and observer. Using the equations of rigid body
motion, this change in depth can be derived precisely.

The recursive estimation task can therefore be formulated as follows. We wish to es-
timate the depth Z at a particular pixel (z,y) in the image plane. For each new image
we can compute a noisy measurement Z; using the brightness change constraint equation.
This measurement can be used to update an estimate Z according to the Kalman filter
update rule. As the next frame k + 1 becomes available, the depth value changes due to the
rigid body motion: Zx4+; = f(Zi). This known transformation can then be used to predict
the estimate for the depth value Z,, in the next iteration. A block diagram depicting this
operation is shown in figure 3.

Note that the previous formulation describes the recursive estimation of Z at one par-
ticular pixel location (z,y). In general we will be interested in obtaining depth information
for every pixel in the image. To accomplish this we can imagine a Kalman filter positioned
at every pixel location where it continuously estimates the depth. During the prediction
stage, some interaction will take place between these spatially distributed Kalman filters
when the projections of real world points of which depth is being estimated move to new
image locations due to rigid body motion.

11
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Figure 3: Block diagram of Kalman filter in motion vision.

So far, we have assumed that the motion parameters t and w are known. This may
be the case in a number of practical situations, in particular when the camera is mounted
on vehicle or robot. In this case, the method outlined above is a complete solution to
the recursive structure estimation problem. The even more interesting problem, however,
arises, when the motion is also unkaown and must be estimated. The key idea is the
following. When depth Z-is known at every location (z,y), we can solve the brightness
change constraint equation (8) for the motion vectors t and w. However, depth is unknown
- it is precisely what the filter is estimating. Now, in each iteration of the filter we have a
current estimate of the depth Z. The idea is then to use the current filter estimate Z for
the computation of motion from the brightness gradient using equation (8). This process
can be initialized by starting with an arbitrary constant value (since the motion estimation
adjusts for the unknown scale factor) for Z everywhere.

This procedure of alternatively estimating depth and motion relies on the fact that
motion estimation is rather insensitive to errors in depth as we show in our experiments.
Conceptually, we can think of the motion vectors as parameters for our filter. Inserting the
motion estimation between update and prediction stage of the filter therefore corresponds
to an online adaptation of the filter paramters. Such an adaptive filter is of course not in
line with the classical Kalman filter theory and theoretical properties derived for the latter
do not extend in a straightforward way.

Figure 4 shows the integration of motion estimation into the dynamic motion vision
process. This block diagram represents the structure which we have implemented and the
components of which we will describe in detail in the following sections.

For the sake of clarity we have omitted another block which should be positioned be-
tween update and prediction part of the filter. Our implementation allows us to perform a
variety of spatial noise reduction operations. This was motivated by two facts:

1. The filter estimation process does not take spatial smoothness into account: each filter
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Figure 4: Block diagram of dynamic motion vision with motion estimation.

at each pixel operates independently. A spatial smoothing step may be desirable to

enforce a certain amount of smoothness.

2. Most any image contains regions of uniform brightness in which no depth information -
is obtainable from motion. Mathematically this is seen by the fact that all components
of the brightness gradient are zero, or very small, in such a region thereby providing
little or no constraint on the value of the depth. Even repeated measurements will
provide poor data with large variances in such regions. In such cases it may be
desirable to fill in data from adjacent regions of lower variance.

Filling in and smoothing are simply cosmetic operations which do not contribute to the
underlying idea of temporal noise reduction via recursive estimation. They are therefore
purely optional in our implementation.

The following sections contain detailed descriptions of the individual modules used in

the dynamic motion vision process.
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4 Direct Depth Estimation

The first stage of the dynamic motion and structure estimation algorithm is the com-
putation of depth from the input image data. As shown in the structural block diagram
in figure 4, the input to the depth estimation stage are the brightness derivatives E., E,
and E; and the motion t and w. The output is the depth Z and its variance at every pixel
(z,v).

In this section, we describe how we compute the gradient of image brightness. We then
show how depth may be obtained in a straightforward way from brightness gradients and
motion. Using data from real images we will show that this straightforward solution is
quite unsatisfactory. We then suggest a way to improve the solution method to produce
better results and illustrate the achievable improvement with more image data.

4.1 Brightness gradient computation

We are given discrete samples E; ;i of the brightness function E(z,y,t). The objective
is to estimate the first derivatives of E with respect to all of its independent variables. The
simplest approximation is obtained using central differences

E:(4,j.k) = (Eigrjk = Eic1,jx) 202 , (17)
E,(3,5,k) = (E;j41x— Eij-14)/248y (18)
E(i,j,k) = (Eijik+1 = Eijr-1)/24t, (19)

where Az and Ay denote the physical spacing of pixels on the CCD chip in horizontal
and vertical directions and At denotes the time elapsed between the acquistion of two
subsequent images.

Horn and Schunck [26) suggested an alternative in which a derivative value is not com-
puted from a difference across a single pixel but as the average of four differences at neigh-
boring pixels:

E:(i,j k) = (Eisrgk = Eijk + Eirrjerk — Eijrre + (20)
Eit1,jk+1 = Eijkser + Eigrj41,641 = Eijjer441)/402

E,(i,j,k) = (Eij+1k = Eijk + Eirrj+14 — Eivrju + (21)
Eij+1k+1 = Eijre1 + Eiv1,j+1641 = Eig1,64+1) /40y

E(i,j,k) = (Eijker = Eijk + Eivr,5641 — Eivr,5k + (22)

Eijr1h41 = Eijork + Eigrj k1 = Eigr,j414)/248

Notice that the derivative approximations are computed from pixel values at the corners of
corresponding grid squares in subsequent images as shown in figure 5.

The pixels form a spatio-temporal cube. The derivative values computed from equations
(20), (21), (22) are therefore the estimates of derivative at the center of this cube - inbetween
frames and inbetween pixels. Since all computations in the direct dynamic motion vision
algorithm are carried out on gradients (the images can be discarded once the gradients
have been computed), the relative position of pixels and gradient values poses no difficulty
during the computation. Note however, that the gradient field will have one row and one
column less than the images used for its computation.
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Figure 5: Location of pixel values for gradient computation

4.2 Single pixel depth computation

We have shown how the brightness gradient E,, E,, E; may be computed and we are
assuming that the motion vectors t and w are known. To compute the depth we use the
brightness change constraint equation (8)

s-t

S +v-w+E=0 (23)

which we can solve for the desired depth Z

st
Z=-Ftve (24)
To obtain an estimate of the variance in the value of Z we assume that the brightness £
at every pixel is corrupted by noise n of variance 0% which is identically distributed at every
pixel and mutually uncorrelated between pixels. The noise in the eight brightness values
used in the computation of the brightness derivatives propagates through the derivatives and
appears in the depth value. Unfortunately, the relationship between depth and brightness
values is nonlinear and rather complex. We will outline briefly how a formula for the
variance p = 0% may be obtained.
As mentioned, eight brightness values E;,i = 1,...8 at the corners of a spatio-temporal
cube contribute to the value of Z:

Z = f(E1y...,Es) (25)

Under the assumption that the nonlinear function f can be locally approximated by the
first-order terms of its Taylor series, the variance in Z is given by

8
p=okY(5) (26)

=1
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To compute the necessary partial derivatives we first determine the immediate relationship
between Z and the brightness derivatives by plugging in the values for s and v from equation
(9) into the depth equation (24). We find

aE, + bE,

= E. + cE, + dE, (27)
in which
a = fU-2W (28)
b = fV—yW (29)
¢ = (zyA- (1 +2")B)/f +4C (30)
d = ((fA+y")A-=2yB)/f -=zC (31)

(Recall that f is the principal distance, t = (U,V,W]T and w = [4,B,C]T). Next, we
plug in the formulas for the partial derivatives E, (20), E, (21), E, (22) which would
require more space than we have available here. However, after differentiating the result
with respect to the eight brightness values according to (26), some simplification can be
done and we obtain

p=F (@GR + (e + (2 (357) ()
where

8Z _ aE;+(ad-bo)E, (33)
0E, = (E.+cE,+dE,)?
8Z _ bE:—(ad-be)E, (34)
0E, = (Ei+cEq+dE,)?
6z aE, + bE, (35)
0E, = ~(E.+cE,+dE,)*

In conclusion, the derivation is extremely complex and the resulting formula is expensive
to compute. Moreover, the result is only valid approximately due to the Taylor series. It
would be extremely useful to find a simpler approximation that serves the same purpose:
quantifying the quality of the measurement Z.

We will now briefly investigate the performance of the depth estimation scheme out-
lined above. This is necessary, since we are relying on the brightness change constraint
assumption. We investigated two scenes in which the camera translated before a planar
surface (a poster) that was parallel to the image plane. Images of the scenes are shown in
figures 6 a) and b). We will refer to them as “wave” and “onnanoko”.

Planar scenes are particularly useful for the evaluation we intend to perform since we
can use the mean, variance and histogram of all the computed depth values to present
results compactly. In the case of the wave image a motion of t = [1.5,0,3] mm was used,
the plane was at a distance of 700 mm initially. The depth was then computed using the
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Figure 6: The planar scenes: a) “wave” b) “onnanoko”.
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Figure 7: Statistical analysis of depth values computed for planar scenes: a) wave scene b)
onnanoko scene.

formulas derived above and the known values for the motion. The resulting histogram is
shown in figure 7 a). ‘

We find that the distribution of depth values is extremely broad with a range of
(-22100,22652]. The standard deviation of 1532 is more than twice as large as the ac-
tual distance of the plane. Ideally, this distribution should have mean 700 and variance 0
(or at least small with respect to the mean). In addition we have many negative values
which are physically impossible (depth must be positive). In short, the depth obtained by
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this method is subject to extremely large errors and almost useless.

A similar observation can be made for the onnanoko scene. Here the motion was t =
(1.5,0, —3) mm with the planar surface at 500 mm initially. The results of the statistical
analysis of the resulting depth map are shown in figure 7. The conclusion is the same: too
much error to be useful.

4.3 Patch depth estimation

Apparently, the quality of results obtained by evaluating the brightness change con-
straint equation at individual pixels in real images is limited. The above results can be
used directly to quantify the amount of error involved in the brightness change constraint
assumption. This error will be significant in general.

From our experience with motion estimation via the brightness change constraint equa-
tion, however, (see section 6.2) we knew that it could be applied with great success in
cases where data was taken from an entire image region and then used to estimate a global
quantity in that region in a least-squares fashion. This prompted us to investigate depth
estimation from a patch rather than a single pixel.

The idea is as follows. Pick a patch size n (typically a few pixels). Assume Z is constant
within a given patch. This gives us n x n constraint equations

2 ;
’—Z-+v-w+E,=o (36)
that all contain the same Z. Find the value of Z that minimizes the sum of squared errors
s-t
¥2)= ) (7+V-w+E¢)2. (37)
z,yeP

in which P is the patch we have chosen. To solve the minimization problem we substitute
d = 1/Z to make the problem linear

d'(d) = Z (d(s-t) + v -w + E;)2. (38)

z,yeP
We differentiate with respect to d

%:2 Z(d(s‘t)+v-w+Eg)(S-t) (39)

z,yeP

to find the necessary condition for a minimum

Y (v-w+ E)(s-t)
d=-2%F : (40)

Y (s-t)?

z,yeP
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Through backsubstitution we finally obtain the expression for Z

Z (s-t)?
- _ z,yeP
S ST T AT “

z,yeP

We note that in the trivial case of a single-pixel patch we have

(s-t)? st

Zz—(v-w+E:)(s-t) T Tv.w+E

(42)

which is the same as the formula (24) that we derived for the single pixel estimation when
s-t#0.

The next task would be to derive an expression for the variance of Z in the same way
demonstrated in the previous subsection. Only now the number of brightness values which
contribute to Z, and which must therefore be used in the derivation of the variance, is
2(n + 1)? where n is the width and height of the patch. From our experience in the single
pixel case we know that this will not only require an extremely lengthy derivation, it will
also lead to a very complex expression for the variance. Instead, we choose to use a simple
approximation to the variance values which exhibits the same properties that we require
for the recursive estimation scheme.

‘ Recall that the purpose of the variance is to indicate the quality of the measurement that
it accompanies. In our case, the measurement (depth Z) is computed as a quotient. The
magnitude of the denominator is of particular importance. When it is zero, the depth cannot
be obtained at all. When it is small, the result is very sensitive to errors in the measurements
that enter into the numerator. The significance of the denominator is reflected in the fact
that it appears squared in the denominator of the expression for the variance in the single
pixel case. In analogy to this we chose the following expression to approximate p:

nisS
(Y, (vow+ E)s-1))?

z,yeP

P (43)

where n is once again the width/height of the patch and § is a constant scale factor. The
term n* is used to normalize the variance with respect to the patch size. The scale factor can
be chosen arbitrarily. However, when the depth estimator is used as part of the recursive
estimation scheme its choice must be coordinated with the initial value of the variance in
the filter. Their relationship determines the convergence property of the filter.

4.4 Evaluating the patch depth estimation procedure

We now compare the patch depth estimation with the single pixel estimation using the
same images and statistical analysis as above. Figures 8 a) and b) show the histograms of
the depth values obtained from the wave sequences using patch sizes of 4 and 9. For better
comparison with the single pixel case, the same histograms truncated to the range used for

. the single pixel histogram 7 are shown in figures 9 a) and b).

19




Data : depth Data thi
Size : 9409 Size &4

Hin  : =33367,027344 Min  : 543.557129
Max 3 20345,453125 Max  : 1065,060669
My s 774,.584351 ] s 777,125
Stgma : 684.406128 Stgne : 57.322249
Buckets: 50 Buckets:

Biidth : 1074,249609 Bdidth ; 10,450071
Minh : 0 BMinh : 0

BMaxh : 8624 BMaxh : 669

From : -33367.027344 From 3 543,557129
To 3 2034545315 Te s 1068,060669

Figure 8: Statistical analysis of depth values computed for the wave scene using patch
depth estimation with a) 4 pixel and b) 9 pixel patches.
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Figure 9: Statistical analysis of depth values computed for the wave scene using patch
depth estimation with a) 4 pixel and b) 9 pixel patches. Histogram ranges truncated to
that of the single pixel histogram above.

We expect that increasing patchsize will decrease the variance and range of the data
and move the mean towards the true depth value of 700. Surprisingly, we find that for a
patch size of 4 the range of depth values and the variance increase (figure 8 a) with respect
to the single pixel case (figure 7 a). However, when both histograms are viewed at the
same scale, it becomes apparent that this effect is due to a small number of outliers that
appear in the patch estimation case. The distribution has in fact become narrower as we
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had expected. In comparing the 9 pixel case 8 b), 9 b) we see that standard deviation and
range have been reduced by 2 orders of magnitude with respect to the single pixel case - a
significant improvement.

The appearance of the outliers can be explained theoretically. All outliers in these
experiments were due to nearly vanishing denominatars in the expression (41) for computing
depth from patches. Compare this with the expression (24) used for depth from single pixel.
In patches of uniform brightness the z and y derivatives of E which appear in the vectors s
and v will be zero. In the single pixel estimation case of equation (24) this will not lead to
a singularity unless E, vanishes. In the patch case of equation (41), however, zero spatial
derivatives cause a singularity.

Experiments run on the onnancko sequence confirm these observations. Despite the
appearance of outliers the distribution of depth values narrows considerably when larger
patch sizes are employed. Although the improvement over the single-pixel depth estimation
is considerable, estimating depth from two frames by such a procedure is rather unsatisfac-
tory.

In practice, special measures should be taken to eliminate the depth outliers. A sim-
ple procedure is as follows: depth mmst be positive and is also bounded from above. Our
implementation therefore includes a simple procedure which succeeds the patch depth es-
timation process. It searches for depth values that exceed the bounds and replace them by
the average of neighbors that conform to the bounds.

4.5 Evaluating the variance computstion procedure

Figure 10: The pepsi scene

To evaluate the performance of the variance measure that we have introduced we make

21




use of yet another real image sequence. In this experiment shown in figure 10, a soda can
was positioned on a table in front of the camera at a distance of 570 mm. The background
is a plane parallel to the image plane at a distance of 1240 mm. The camera translated
t = [1.5,0,0] mm between the two frames used to compute the gradient.

Figure 11: a) Depth and b) logarithm of variances from the pepsi scene using patch estimate
with patch size 9.

Figures 11 a) and b) show the depth and variance computed by the patch estimator with
a patch size of 9. The brightness of a point in these figures is proportional to the magnitude
of the value at that location where dark points correspond to small values and light points
correspond to large values. Due to the outliers in the depth map and the wide range of the
variance values the brightness-encoded presentation of this data particularly difficult. For
this reason the depth values have therefore been truncated to a range of (500, 3000). This
range contains over 97 % of all depth values. To present the variances we add 1 and take
the natural logarithm. Figure 11 b) therefore illustrates the spatial distribution of variances
qualitatively and the actual variation between the variances is orders of magnitudes larger
than they appear thus enhancing the effects noted below.

Note the large errors in depth that appear on the lower right of the can and the frontal
portion of the table the can is standing on. In comparing with the image we find that
these regions are basically uniform in brightness so that a zero brightness gradient results.
We therefore expect the depth estimate in those regions to be poor. As a consequence the
variances there should be large. Note how the brighter areas in the variance figure pick
out the areas in which the error in depth is large. Since the distribution of variances is in
actuality orders of magnitude wider than the logarithmic intensity map suggests, poor depth
estimates are very easily identified by their variance values. These observations not only
support the approximation we have made to obtain the variance values but also suggests a
way by which regions of poor depth estimates may be “filled in” using surrounding values
of lower variance.

22




4.6 Algorithmic aspects of patch depth estimation

Finally a note on the algorithmic aspects of depth estimation using the direct patch
method. The approach outlined above can be implemented in a straightforward way in
time O(n?k?) where n is the width/height of the image and k is the width/height of the
patch. We simply compute the sums

51 = Y. (s-t) (44)
z,yeP :

S2 = Y (v-w+E)(s-t) (45)
z,yeP

for each of the (n — k + 1) x (n — k + 1) possible patches where each sum consists of k x k
values. '

Using the idea of running sums it is possible to reduce the computation time by a factor
of k2. Notice that the patch used to compute §; and S for a given location (i,7) in the
image differs only by one column of & elements from the patch used in the computation at
location (i+1, 7). The idea is therefore to compute the full k x k sums only once (in the top
left corner of the image for example) and to compute neighboring values by simply adding
a new rightmost column and subtracting the leftmost column. The same idea can be used
along the rows of the image, so that each pixel is only used once in the computation of all
sums and the worst-case complexity is O(n?).

In practice, a circular buffer is used to hold the values of the sums in each column and
row of the current patch. Some overhead is associated with maintaining this buffer so and
errors will propagate through the entire image in this case. We therefore chose to apply
the running sum technique only along each line of the image and recompute the k x k sum
at the beginning of each line.
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5 The Update Stage

As we see fr om the dynamic motion vision block diagram 4 the task of the update
stage is to take as input a depth measurement Z and its variance p and combine it with a
current estimate of depth Z and variance p to update the estimate.

5.1 The update equations

In our presentation of the recursive estimation theory we have introduced notation that
will allow us to map the theoretical results directly onto the motion vision problem domain.
The measurement Z; in our case is the depth at a particular pixel (z,y) in the kth frame.
The variance p; is the variance of the depth. In the previous section we have outlined, how
both values may be obtained directly from image brightness values.

It follows that one filter will maintain an estimate Z and its variance p at a particular
pixel (z,y) in the image. We can think of having one filter at every pixel that estimates
the value there. The update equation for each one of these filters is identical and extremely
simple. We have

Zi/ox + 21/ pn
2 SRR T SRR 46
T TUne+ 1n (46)
1

B - 47

. P 1/pe + 1/n (47)

which is taken directly from the simplified Kalman filter equations (12) and (13). The
theoretical properties of this update process have been discussed in detail in subsection 3.1.

5.2 Evaluating the update process

To study the effect of the update procedure we show results obtained from the pepsi
sequence introduced in the previous section (figure 10). The depth measurement Z; and
its variance p; are computed from the brightness gradient using the patch depth estimate
described in the previous section with a patch size of 9 pixels and using the known motion
t = [1.5,0,0] mm. The resulting depth map is shown in figure 12.

For the update procedure we used a previous estimate Z corresponding to a frontal
plane at 1000 mm distance. Since initially we have no information about the shape of the
scene a flat depth map is a plausible way to start. The choice of initial variances p; should
be large so as to indicate the complete uncertainty about the current estimate. Since the
square root of the variance is the standard deviation of the error we used a variance of
p = 10002.

Now we update the depth estimate and its variance according to the update equations
(46), (47). The resulting depth map is shown in figure 12 b). As a result of the update,
the flat depth map is almost completely replaced by the incoming measurement except in
areas of large error as indicated by the variance values. locations. This is precisely the
effect we expect from the update procedure and we can imagine how a repeated application
of this process over time can significantly reduce the amount of error present in a single
measurement.
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Figure 12: Depth maps from the pepsi scene a) measured using the patch estimator with
patch size 9, b) after the update process with an initially flat depth map.

5.3 Algorithmic aspects of the update process

The serial complexity of the update process is easily seen to be O(n?) with n being
the width/height of the image. Given n x n processors on a parallel machine this can be
reduced to O(1) since the update equations are local to each pixel. The filter update is
indeed the fastest of all operations that constitute the dynamic motion vision algorithm.
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6 The Prediction Stage

The task of the prediction stage as we see from the block diagram of figure 4 is to
determine how a depth and variance map at time k will appear to the observer at time
k + 1 assuming that the relative motion of observer and surface are given by the motion
vectors t and w. Informally this may be stated as follows: given an estimated depth map
and a 3D motion, what will the depth map look like after the motion?

We state the problem more formally. Let (X,Y, Z) denote coordinates of a point in the
real world and (z,y) denote the coordinates of its projection in the image plane. Given an
array of depth values Z(z;,y;) fori =0,...,A—-1land j=0,...,w -1 (i.e. on a regular
grid) and a motion t = [U,V,W|T, w = [4, B,C]T, what are the values of Z(z;,y;) after
the given motion?

Since the Z values are known only at the grid points, it does not suffice to simply
transform the 3D coordinates corresponding to the given motion. The transformed values
may not coincide with grid points, they may have become occluded or moved out of the
field of view. A resampling of the warped surface and hence some form of interpolation
between the given samples is necessary.

An additional problem is the following: We interpret the given values of Z(z;, y;) as nor-
mally distributed random variables with variance p(z;, yi). What are the value of p(z;, v:)
after the warping? The answer to this question is a integral part of the dynamic motion
vision algorithm. We present here the algorithm for warping the depth map Z(z;,y:). The
transformation of variances presents no fundamentally different challenges but is rather
lengthy in nature so we chose to attach it as an appendix (Appendix A).

6.1 Warping the depth map: outline of the algorithm
The outline of the algorithm is as follows:

1. Using the equations of perspective projection we compute the 3D coordinates corre-
sponding to the given depth values. Thus, we have the transformation

(zij» ¥ij» Zi5) = (Xi;, Y5, Zij) (48)

2. Using the equations of motion we tranform the 3D points into the new coordinate
system. The transformation is

(Xij» Yij» Zij) — (XG5, Y550 Z35) (49)

U ARt At ¥
3. For each pixel (z,y) in the new coordinate system we seek to determine the location
in 3D where the ray through (z,y) intersects a surface through the points computed

in the previous step. The Z coordinate of the intersection becomes the Z value stored
at (z,y). This procedure is referred to as resampling.

4. Grid values of Z that remained undetermined after the previous resampling step
(parts of the surface which enter the field of view due to the motion) must be filled.
We extrapolate from the known values in a straightforward way.

We now elaborate the details of the above algorithm.
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Figure 13: A depth surface Z(z,y) before prediction warping.

6.1.1 The initial situation
We start with Z(z;,y) = Z;j fori = 0,...,A—1and j = 0,...,w — 1 as the depth
map. z; and y; are given by

w;I)Az and y.-:(i_ﬁ;—l)Ay (50)

where w, h are the dimensions of the camera pixel array and Az, Ay are the spacings
of pixels in horisontal and vertical directions. This situation is shown in figure 13. The
motion is given as t = [U,V, W|T and w = [4, B, C|7.

zj=(j-

6.1.2 Inverse Projection

We compute the 3D coordinates of all the points whose depth is stored in the depth
map using inverse perspective projection. The goemetry of perspective projection along
the z direction is shown in figure 14. We compute

x‘.,.=£:%i’_7_'l and Y,=%_Z%;L) (51)

fori=0,...,A-1and j =0,...,w — 1. The focal length is denoted by f.
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Figure 14: The perspective projection situation along the z direction.

6.1.3 Warping

We transform all the 3D points into the coordinate system obtained after preforming
the given motion t, w. Transformed points will be denoted by a prime. We have

Y‘; = - \ 4 - C 1 -A Yt: (52)
w -B A 1 Z;;

fori=0,...,A—1land 5=0,...,0-1.

\"‘ Mot Wi i “.:'»= ,"..
Figure 15: The motion warping.

The effect of this transformation is conceptually equivalent to moving the depth wire
frame in space according to the given motion. The result can be visualized as in figure 15.
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6.1.4 Resampling

Now we encounter the main problem in the prediction algorithm. If we project the
points (X};, Y}, Z!;) back into the image plane they will most likely not coincide with the
grid points as shown in figure 15. In other cases the backprojected points may have become
occluded by other points or have moved out of the image plane. We handle these problems
as follows: we interpret each point (X’,Y’, Z’) obtained from the warping step as a sample
of a 3D surface and the objective is to resample this surface at the grid points. This requires

an assumption about the structure of the surface inbetween the sample points.

Figure 16: Triangular facet subdivision.

We will consider each grid square in the array. Such a square is given by its corner
coordinates (i,7),(¢ + 1,5),(i,7 + 1),(i + 1,j + 1). For each of the four corners there is
a warped 3D surface point (X{;,Y};, Z;) available. We divide the grid square into two
triangles

(4304 L,7) (4,7 + 1) (33)

(+ L+ 16+ LT +1) (54)

as shown in figure 16. The three points in 3D corresponding to these corners define a plane
in space which we will use as our surface approximation. Most importantly the spatial

triangle T between these points prespectively projects into a triangle 7" in the image plane.
All grid points inside T’ have rays which intersect the spatial triangle T

29




The value of Z which we obtain by this intersection procedure, however, need not be the
truly visible depth value, since the currently considered spatial triangle may be occluded
by other triangles. But if we repeat the procedure of computing the intersection for all
possible spatial triangles, then the smallest value of Z obtained at a given grid point will
be the truly visible depth value.

1. Determining the image plane projections of the spatial triangles

For every spatial triangle T we have the 3D coordinates of the corners [X;, Y}, Z;|7,
(X2, Y2, Za]T and [X3,Ys, Za]T. It is intuitively clear and can be shown analytically,
that this spatial triangle T perspectively projects into a triangle 7" in the image plane.
The corners of this triangle are (z1,%1), (z2,¥2) and (z3, y3) where

Y
ze=fZ=  and yk=fz—: (55)

fork=1,2,3.

2. Determining the grid points inside the triangle T’

The rays through all grid points (z,y) inside T’ intersect the corresponding spatial
triangle T i.e. the warped surface and it is these intersection points that we would
like to determine. The first step is to compute all grid points inside T".

We first determine the bounding box of the given triangle. The z coordinates are
between Zmin and zm,r given by

Zmin = min(zy,22,23) and  ZTmer = max(z;,z2,3) (56)

and similarly we compute bounds ¥min, Ymaz On the y coordinates. This determines a
square in the grid. The grid points inside this square have coordinates in the ranges
[imim ima.t] and Umim jmaz] where

. s Do w-1 . T w-—1
Jmin = ceil( K;" + T) and Jmaz = floor(ﬁ + T) (57)
. . i h-1 . h-1

imin = cezz(yZ—y" +=5-) and imaz = fzoor(yZ;’ +=5=) (8)

in which ceil(z) is the smallest integer larger than z and floor(z) is the largest integer
smaller than z. In addition, we must insure that the values jmin, Jmazs imin and imaz
are actually grid points i.e. that they are in the range [0,w—1] or [0, — 1] respectively.
If this is not the case, we set them to the closest value which is inside the grid.

For all grid points with indices (i, ;) in the computed range we must now determine, if
they actually lie inside the triangle 7. We can use a simplified polygon containment
test: Arrange the vertices of the triangle in counterclockwise order and then test if
the candidate point lies in the left half plane of all of the three edges as we proceed
in counterclockwise direction.
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More formally, to test

w-1

2

y = (-2 D)y (60)

z = (§- )Az (59)

for containment in (z1,31) - (22, ¥2) - (z3,y3) we first compute

(z3 = z1)(y2 = 1) — (y3 = n1)(z2 — 21). (61)

If this is positive, then the given sequence of points is in clockwise order and we switch
(z2,y2) and (z3,y3) to obtain counterclockwise order.

Now we compute the three values

(z2=z1)(y—n) = (z - n1)(y2 - 1) (62)
(z3 = z2)(y — ¥2) — (7 - 22)(¥3 — ¥2) (63)
(z1 = z3)(y — y3) = (z ~ z3)(31 — ¥3) (64)

If all three values are positive, the point (z,y) is inside the triangle. Each test deter-
mines containment in one left half-plane. For each spatial triangle T we thereby obtain
a (possibly empty) set of image plane grid points (z,y) which have rays intersecting
T.

. Determining the intersections of the grid rays with the spatial triangles

For each of the grid points (z,y) the ray has the equation

- .-

X z
Y i=A|y (65)
Z | Wi
for positive A. The plane through the spatial triangle T has the equation
X X, [ X, ] X3
Yi=al h |[+8| V2 |+(1=a=-8)| Y5 |. (66)
A 21 A Zg ] Zs

In computing the intersection of the ray with the plane we obtain three linear equa-
tions for the three unknowns a, 8 and A. Knowledge of X is sufficient to determine
the point of intersection.

The determinant of the system is

D = (X1-X3)[(Z2-23)y—-(Y2-Y3)f] - (67)
(1 = Ya)[(Z2 - Z3)z - (X2 - X3)f] +
(Z1 ~ Z3)[(Y2 - Ya)z = (X2 - X3)y]
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and the adjunct of A is

Dy = -X3[(Nh -Ys)(Z: - 23)- (Y2 -Y3)(Z, - Z3)] (68)
+Y3((X1 = X3)(22 - Z3) - (X2 - X3)(2) - Z3))
-2Z3[(X1 - X3)(Y2 - Y3) = (X2 - X3)(Y1 - Y3)).

So if D is nonzero we have

D, _
A= - (69)
and the intersection point is given by
X z
Y i=A|ly (70)
z f

The case where D = 0 is mathematically possible in two cases, only one of which can
occur here. In the first case the ray and the plane do not intersect. This cannot occur
since we have selected the rays in such a way that they must intersect the triangle.

The second case is where the ray lies in the plane defined by the spatial triangle. In
this case there are are infinitely many solutions which will manifest itself in D = 0.
In this case we would like to have the intersection point with the smallest value of Z.
This point will lie on one of the three triangle edges. We can therefore compute the
intersection of the ray with the three triangle edge segments (there must be at least
two intersections) and select the one with the smallest depth value.

Each edge segment of the spatial triangle is given by two points in space [X,,Y;,Z I]T
and [X3,Y2, Z2]T. The equation of the line is

X Xl X2
Y i=aj 1 |[+(1-a)| ¥, (71)
yA VA Z;
which we must intersect with the ray
X z
Y =2y (72)
z f

for A > 0 and 0 £ a < 1. This yields three equations for the two unknowns A and a.
Since we know (by the fact that D = 0) that the two must intersect, we can use any
two of the equations and compute the determinant

d= .’L'(Y] -— Yg) - y(Xl b Xz) (73)

as well as the adjuncts
da = —-yXa2+1zYs (74)
d = (X1 -X2)Ya-(NM-Y2)X; (75)
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If d is nonzero we have

dy _d,
= T and A= —d— (76)

If a < 0or a > 1 the ray intersects the line outside the segment between the two
given points and we try the next triangle edge. A < 0 is not possible. Having tested
all these conditions, the desired intersection is

X z
Y [=A]y|. (77)
zZ f

Finally, if d is zero, then the triangle edge segment coincides with the ray and the
desired point is the segment endpoint with the smallest depth value. In other words
if Z; < Z, the intersection point is [X;,Y;, Z,]T otherwise [X3, Y3, Z5]T.

4. Creating the resampled depth map

Each spatial triangle T may lead to depth values Z for a number of different grid
point locations (z,y). Some grid points may have multiple values of Z assigned, if
the ray through that point intersects the 3D surface more than once. Among these
points we are interested in the one closest to the camera, for it will occlude all others.
Hence we simply ignore all depth values Z at a particular point except the smallest
one.

In practice we will initialize the depth map Z;; with oo (some very large value) before
resampling the warped depth surface as described above. Whenever a new value Z is
computed for location (i, j) we replace Z;; with Z if and only if Z;; > Z. After each
grid triangle has been considered, Z;; will contain only the minimal values of depth
computed at that point.

6.1.5 Extrapolating to unassigned grid points

It is easily conceivable that some grid points will not have been assigned any value of Z
after the resampling step. This will be reflected by the fact that some depth map values are
still co after all grid triangies have been considered. Physically these points correspond to
surface points which have become visible due to the relative motion of camera and scene,
so that no depth information is available there.

In general, we can say nothing about the correct depth value at these locations. If,
however, we assume that the surface is somewhat smooth then we can extrapolate the
depth values at these points from known values at neighboring locations.

In our current algorithm, we search the depth map for unassigned locations (where
Z = o0). Suppose (i, ) is such a grid location. We then search all neighboring pixels (with
coordinates differing by ~1, 0 or 1 from (¢,7)) for finite values of Z. Say we find n such
pixels. Let the sum of the Z values of these pixels be £Z. Then we assign the value

£z

Z = - (78)
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at location (i, j). If all neighboring pixels were also unassigned, we increase the radius of
our search from 1 to 2 and try again. If the search radius exceeds the size of the image
then none of the grid points has been assigned any value. This would mean that none of
the previously visible surface part is visible in the current image.

6.1.6 Summary of the algorithm

Below we briefly summarize the steps of the depth prediction algorithm using the no-
tation from above

1. Initialize the reinterpolation depth map to Z;; = oo for all i, 7.

2. Determine the 3D coordinates of each point stored in the current depth map using
the inverse perspective projection: 4

X =2 and Y, = 2% 79
y) f J f ( )
3. Warp the 3D points into the new coordinate frame:
Xl vl 1 -C B Xi;
Yi|=-{V]|-] C 1 -A Y;; (80)
Z:j w -B A 1 Zi;
4. Project each 3D point back into the image plane
X' Y’
Ti;=f=*+ and  yj=f=L (81)
4 VAS ] AR

Each grid square (,7) - (i+1,5) = (i,j+1)=(i+ 1,5+ 1) is divided into two triangles
(1,7)-(i+1,7)—(¢,j+1)and (i+1,5+1)=(i+1,5)=(¢,j+1). For each such triangle
the previous step has produced three corner points (z’, ¥’) in the warped image plane.
We determine all the grid points in the warped grid which fall into this triangle. This
is done by first computing the bounding box of the triangle and then testing each
grid point in the bounding box for containment in the triangle. The ray through each
grid point found to be in the triangle will intersect the corresponding spatial triangle.

(&)

6. For each grid point (i,7) inside of a triangle we compute the intersection of the ray
through that gridpoint with the corresponding spatial triangle according to one of
the three cases discussed in subsection 3. If the Z coordinate of the intersection is
smaller than the current value of Z;; we replace Z;; by the new Z.

7. After all grid triangles have been considered, we search the depth map Z;,- for 0o. For
each such grid point found we extrapolate Z from the closest gridpoints with Z # oo
as described above.
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Using the procedure described above and some simple facts about the propagation of
variances we can also determine the variances of the warped and resampled depth map.
These variances are needed for the operation of the recursive estimation procedure in the
next iteration. Due to the lengthy nature of the derivation we have attached it as Appendix
A for the interested reader.

8.2 Algorithmic aspects of the prediction stage

Suppose that the depth map consists of n x n values. This means there are 2(n — 1)?
triangular facets which must be considered for backprojection after the warping stage. In
the worst case, the backprojection of each facet could subsume the entire image plane and
therefore necessitate the update of n? depth and variance values. The worst case complexity
is therefore O(n*). For most well-behaved surfaces and small motions, however, the the
backprojection of each triangle will subsume a number of pixels which can be bounded by
a small constant.

A parallel machine could devote one processor to the computation associated with one
triangular facet. As we pointed out the result of this computation may effect all n? pixels
in the image plane so O(n?) operations are necessary at each processor. The prediction
part of the algorithm is computationally most expensive.
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7 The Motion Estimation Stage

In our previous discussion we have seen that both the depth measurement and the
Kalman filter prediction stage require knowledge of the parameters of rigid body motion t
and w. In some cases, the motion may actually be known from some external source, for
example, when our camera is mounted on a vehicle for which the motion can be measured
or commanded precisely. If so, this information can be used and the subsequently described
motion estimation module is not needed. If, however, motion information is not available,
the motion must be determined from the image sequence.

7.1 Least squares motion estimation

As we pointed out before, motion estimation using the brightness change constraint
equation (8) is not possible since the depth Z is unknown. At this point, we can exploit
the iterative nature of the recursive estimation process. At every point in time, the filter
produces an estimate of the depth Z,. We use this estimate of the depth map as input
to the motion estimation stage as shown in the block diagram 4. The task of the motion
estimation stage is therefore: given a depth map Z(z,y) and the brightness gradients E,
Ey, E; compute the motion t and w.

If the depth Z is given, the brightness change constraint equation (8) contains 6 un-
knowns: the motion vectors t and w. We obtain one such linear constraint equation for
every pixel in our image. Instead of selecting 6 of these equations and solving them for
the desired parameters we formulate a least-squares problem using the constraints at every
pixel within an image patch in order to reduce the effect of noise (see Horn, Weldon (28]).

More formally, we have

min Y (57 +v-w + E)? (82)
z vy

tw

which we differentiate with respect to the motion vectors to obtain the necessary condition
for a minimum

T VT A
EEE+ET S = -Ty 2 (83)
Ty r y T y

T
(sz—;-)t+(22vvr)¢u = —ZZE:V (84)
z ] z vy z 1}

The above summations are carried out over all pixels in the image region of interest. This
linear system (83), (84) of 6 equations can be easily computed from the brightness gradients
and the given depth Z. It is noteworthy in this context that the system matrix is symmetric
so that the number of coefficients to compute can be halved. Any standard technique (see
[52]) can be used to solve the linear system.

7.2 Evaluating the motion estimation procedure

A crucial point is of course the fact that the depth map used in the motion estimation
is not the true depth map but the depth map produced by the filter, which is subject to
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errors. An important issue is therefore how the motion estimation procedure performs in
the presence of errors in the depth map. This is difficult to evaluate, since true depth maps
for scenes are rarely available. This is where the experiments on planar scenes come in
handy. Planar depth maps are trivial to create and the true depth of the experimental
scene can be measured quite accurately. Moreover the error in a typical depth estimate as
it is produced by the patch depth estimation procedure is approximately Gaussian (figure
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